

Mataki-Lite EMBASIC Reference

Version 2

This document describes how to write scripts in the EMBASIC language for use with

Mataki-Lite tags and includes a complete reference for every command, keyword,

function and PS variable. Describes features up to and including firmware V1.2.3.

Mataki-Lite EMBASIC Reference i

Version 2 Copyright © Debug Innovations Ltd 2018-2019

Version History

Version Date Changes

1 6 March 2018 First Release for V1.2.2 firmware

2 23 October 2019 Updated for V1.2.3 firmware and EMBASIC V1.4

Related Documents

Mataki-Lite User Guide

Mataki Support Board User Guide

Mataki-Lite EMBASIC Reference ii

Version 2 Copyright © Debug Innovations Ltd 2018-2019

Contents

Version History .. i

Related Documents .. i

Contents .. ii

1. Introduction ... 1

2. Flash Storage ... 2

2.1. Logs ... 2
2.2. Settings .. 2

3. Developing and Loading Scripts ... 3

4. Script Examples .. 4

4.1. Introduction to GPS .. 4
4.2. Getting a GPS Fix ... 5
4.3. Automated Log Downloads ... 6
4.4. Sending and Receiving Private Messages ... 8

5. Platform Specific Variables .. 9

5.1. Constants .. 9
_PI .. 9

_RADTODEG .. 9

_DEGTORAD .. 9

_EARTHRM .. 9

_PCBVER ... 9

_VER$... 9

_PLATFORM$... 9

5.2. Settings ... 10
_ID .. 10

_STDLY .. 10

_S1...S4.. 10

_S1$...S2$.. 11

_OWNER$... 11

_STUDY$.. 11

_SCRIPTLOCK ... 11

5.3. GPS Control .. 12
_GPS .. 12

_GPSSIGNAL ... 12

_FIXLAT ... 13

_FIXLON ... 13

_FIXALT ... 13

_FIXPDOP ... 13

_FIXHDOP .. 13

_FIXVDOP ... 13

_FIXSATS ... 13

_FIXVALID .. 13

_LOGFIX ... 14

_DBGGPS .. 14

Mataki-Lite EMBASIC Reference iii

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.4. Radio Control.. 15
_RADIO .. 15

_RADCHAN ... 15

_RADTXPWR ... 16

_RADSPEED .. 17

_RADMSG$... 17

_RADRSSI ... 17

_DBGRADIO .. 17

_FREQBASE .. 18

_FREQCAL .. 18

_CONTACT.. 19

5.5. Log Control .. 20
_LOGCLEAR .. 20

_LOGUSED .. 20

_LOGCAP .. 20

_LOGFIX ... 20

_LOG$.. 20

_LOGNUM ... 20

Analogue Inputs ... 21
_LIGHT ... 21

_VBATT .. 21

_SEASENSE ... 21

5.6. Time and Date .. 22
_UPTIME .. 22

_SLEEP ... 22

5.7. Other Controls .. 23
_RESET .. 23

_LED .. 23

_SUPPLEDS ... 23

_SUPPLED .. 23

_SUPPCONN ... 23

_TP1/_TP2 .. 24

_TP3/_TP4 .. 24

6. EMBASIC Reference ... 25

6.1. Keywords ... 25
ABS .. 25

ASC .. 25

ATN ... 26

BEEP .. 26

BREAK .. 27

CHR$.. 27

CLOCK .. 28

CLS .. 28

COLOR ... 29

CONT ... 29

COS ... 30

Mataki-Lite EMBASIC Reference iv

Version 2 Copyright © Debug Innovations Ltd 2018-2019

DATA ... 31

DATE$.. 32

DELAY .. 32

DIM .. 33

END ... 33

EXP .. 34

FILES ... 34

FIX ... 34

FOR ... 35

GOSUB ... 37

GOTO ... 38

HELP .. 38

HEX$.. 38

IF ... 39

INKEY$... 40

INPUT .. 41

INT .. 42

LEFT$... 42

LEN .. 43

LET .. 43

LIST ... 44

LOAD ... 44

LOG ... 45

LOWER$... 45

MID$.. 46

NEW ... 46

OLD ... 47

ON ... 48

POS .. 49

PRINT .. 49

RANDOMIZE ... 50

READ ... 51

REM ... 52

REPEAT .. 53

RESTORE .. 54

RIGHT$.. 55

RND ... 55

ROUND ... 56

RUN ... 56

SAVE .. 57

SGN ... 58

SIN .. 58

SPC .. 59

SQ ... 59

SQR ... 60

Mataki-Lite EMBASIC Reference v

Version 2 Copyright © Debug Innovations Ltd 2018-2019

STOP .. 60

STR$.. 61

SWAP ... 61

SYSTEM .. 62

TAB .. 62

TAN ... 62

TIME$.. 63

TIMER .. 63

TRON ... 64

UPPER$.. 64

VAL .. 65

VER .. 65

6.2. Operators ... 66
6.3. Operator Precedence ... 68

7. Not Supported ... 70

8. Known Issues .. 70

Mataki-Lite EMBASIC Reference 1

Version 2 Copyright © Debug Innovations Ltd 2018-2019

1. Introduction
This reference guide describes the features in V1.2.3 of the Mataki-Lite firmware. Later

firmware versions are likely to support everything in this version. The firmware version

is identified in the first line of the text output on PuTTY. It can also be found by typing

'ver' at the prompt.

EMBASIC is a small implementation of the BASIC language for scripts that direct the

operation of Mataki-Lite tags. EMBASIC is similar to other BASIC dialects and the core

BASIC language constructs are the same. In addition, EMBASIC has extensions to

control the Mataki-Lite hardware. If you are new to BASIC, we recommend you

familiarise yourself with the language before going any further.

Due to lack of memory and other restrictions, some BASIC features are not supported in

EMBASIC:

 All numeric variables are floating point. There are no integer variables.

 There is limited support for strings and no support for string arrays.

 Numeric arrays are supported though they are restricted in size due to memory

constraints. Multi-dimensional arrays are not supported.

 Because all I/O goes through a serial port, there is no support for graphics,

sound or file operations.

A full list of supported keywords and functions is given in section 6.

Control of the tag's functions is mainly through special variables called "platform-specific

variables" or PS variables for short. PS variables are distinguished from ordinary BASIC

variables with an underscore as the first character. For example _ID is a PS variable

that holds the tag's ID. The ID can be read in any BASIC expression which needs a

numeric result e.g. x = _ID. The ID can be written by assigning a value to it like any

other BASIC variable e.g. _ID = 5. Just like BASIC string variables, PS string variables

end in a '$', for example _PLATFORM$ contains the platform name.

Some PS variables cause things to happen e.g. _VBATT reads the battery voltage when

read and logs the battery voltage when written. Some PS variables are read-only e.g. an

attempt to write a new value for _PI will give an error. A complete reference for the PS

variables is given in section 5.

Note that some of the time functions have standard BASIC keywords and are

implemented as such even though they are driven by the tag's hardware and are

affected by GPS time updates - see CLOCK, TIMER, TIME$ and DATE$.

Mataki-Lite EMBASIC Reference 2

Version 2 Copyright © Debug Innovations Ltd 2018-2019

2. Flash Storage

2.1. Logs
Most of the flash memory is used for log entries. Entries are usually GPS fixes created

automatically when tracking but other types of entry are possible. A script can use

_LOG$ to store short strings created by the script. Each log entry also contains a log

index (entry number), the time/date and the tag's ID number.

From firmware V1.2.3, log entries can be read out using _LOG$ and _LOGNUM. The

following script reads and displays the whole log...

 10 FOR L = 1 TO _LOGUSED

 20 _LOGNUM = L

 30 PRINT _LOG$

 40 NEXT L

Each log entry is a string containing fields in the following order:

 Log index
 Sequence number
 Host ID
 Source ID
 Log type
 Time log entry created
 Log contents (varies depending on log type)

This format is the same as that produced by a Mataki-Classic base station and the same

Python script can be used to convert the data to other file formats.

2.2. Settings
Some PS variables represent tag settings. They are stored in the flash memory and are

reloaded after a re-boot or power cycle. It is good practice not to repeatedly write

values stored in the flash as the flash can wear out after many millions of writes. This is

easy to do in a loop writing values over and over again. All PS variables that are stored

in the flash are identified as such in section 5.

There are some generic 'setting' PS variables that can be used to retain the state of the

script between re-boots or can be used as settings for a standard script running on

different tags with different requirements. This avoids the need to load a new script if

only slightly different behaviour is needed between tags - see _S1 to _S4 and _S1$ to

_S2$.

Mataki-Lite EMBASIC Reference 3

Version 2 Copyright © Debug Innovations Ltd 2018-2019

3. Developing and Loading Scripts
EMBASIC scripts can be written using any plain text editor such as Notepad and saved to

disk. Files should be given the extension '.bas'.

Script files can be loaded into the Mataki-Lite emulator software on a PC using the LOAD

command, be saved to disk using the SAVE command and files listed using the FILES

command. The emulator software is a convenient way to develop and test scripts. It

isn't identical to the real tag and it is no substitute for real-world testing but it is

convenient and fast and has enough hardware emulation to help with code

development.

For real hardware, script files can be programmed into the flash on a tag using the

load_script utility. They can be edited using the built-in EMBASIC editor on the tag and

saved to the flash using the SAVE command on the tag. It is also possible to 'paste' a

script into PuTTY for testing.

Advanced base stations can also load new scripts over the radio. If you don't want this

to happen when you are developing scripts, set _SCRIPTLOCK to '1'.

Mataki-Lite EMBASIC Reference 4

Version 2 Copyright © Debug Innovations Ltd 2018-2019

4. Script Examples

4.1. Introduction to GPS
The main purpose of Mataki-Lite is to log the positions of a bird or animal over

time. The GPS module calculates the position of the tag from signals received

from GPS satellites. It also gets the time from the same source. However, this

process is complex and it can take some time, particularly the first position fix

because the tag has no idea where it is on the Earth, it doesn't know where the

satellites are and it doesn't know what time, date or year it is. This is a

simplified description of the process the GPS follows to know where it is...

1. Initially, the GPS receiver scans all the radio channels in turn looking for

satellites. This is a random process and it is pure luck how long it takes.

2. When it finds a satellite, it gets the time and week number and starts

downloading something called an almanac. The almanac is a

mathematical description of the orbits of all the GPS satellites. There is

also a fine correction for each satellite called the ephemeris data.

3. Once the almanac is available, the module can work out which satellites

are near the one it has found and what channels they are transmitting

on. In this way, the module can find multiple satellites and receive

multiple sets of data.

4. The full almanac and ephemeris data can take a single satellite 10

minutes to broadcast. However, the data each satellite transmits is out of

sync. with the other satellites, so if the receiver can listen to many

satellites, the complete data set can be downloaded more quickly. As

more and more is known about the satellite orbits, the module can lock

on to more satellites and the process speeds up.

5. At some point there is enough information to resolve the week number

into a calendar date and we get the GPS time/date from the module.

This is shown on the PuTTY text and the tag's on-board clock is set to

GPS time. GPS time is precisely the same for all satellites and it is set to

UTC time (same as GMT/London).

6. The module gets different times in the transmissions from each satellite

due to the time the signal takes to travel from the satellite to the module.

However the transmission also contains the satellite's position. With

some complex maths, the module can work out the distance to all the

satellites and calculate its own position. This requires at least 3 satellite

signals but a more accurate position is obtained with at least 4 satellites.

Mataki-Lite EMBASIC Reference 5

Version 2 Copyright © Debug Innovations Ltd 2018-2019

4.2. Getting a GPS Fix
When writing scripts, the complex process of getting a GPS fix is fully automated

but minimising power consumption requires that the GPS is only on when it is

needed. This is the simplest way to log a GPS fix:

1000 REPEAT

1010 _GPS = 1

1020 UNTIL _FIXVALID = 1

1030 _GPS = 0

Setting _GPS to 1 turns on the GPS module and also runs the GPS firmware built

into the tag. That is why it is necessary to loop round constantly setting _GPS to

1. When a fix is obtained _FIXVALID will be set to 1 and the loop will

terminate.

_GPS = 0 turns the GPS off. It is important to note that the GPS module power

is still on, the module is merely sleeping. In this state the module retains the

almanac and ephemeris data and its real-time-clock continues to run. When the

GPS is turned back on, there is no need to download all the data again, the

module knows roughly where it is and it knows the time, so a fix will be obtained

quicker.

If you want to turn off the GPS power, set _GPS to -1. Once the module has

been turned off, getting another fix will require the full almanac and ephemeris

to be reloaded. To help with step 1 in section 4.1, the tag firmware will load the

current time and last known position into the GPS module to give it a clue which

satellites might be available. However, in practice, this doesn't shorten the time

to first fix by much.

In the example above, setting _GPS to 1 not only turns the GPS module on but

also automatically logs a fix when it is obtained. Repeated loops will log multiple

fixes (tracking). If _GPS is set to 2, the fix will not be logged. This allows a user

to post-process the fix to decide whether it meets the application's criteria e.g. it

is common to require at least 4 satellites and the DOP values to be low enough.

The fix can then be logged by setting _LOGFIX to 1.

The latitude, longitude and all the other fix data are available as PS variables,

see section 5.3. These can be examined by the script to make decisions e.g.

GEO-Fencing an area of interest causing an increase in the logging rate.

Mataki-Lite EMBASIC Reference 6

Version 2 Copyright © Debug Innovations Ltd 2018-2019

The biggest problem with the simple script above is that it has no timeout. So

an animal living in a burrow or rolled over onto the tag would never receive a fix

and the script above would leave the GPS module on until the battery went flat.

Adding a timeout is more complicated than it appears at first as the tag's clock

can be set to the GPS time when it is obtained from a satellite. This will cause

the tag's time to jump. The supplied example tracker script contains code which

can deal with this and still timeout correctly.

_GPSSIGNAL can be used to estimate whether the GPS module has any chance

of getting a fix or not. For example, for animals that live in burrows, it is worth
checking the signal 20-30 seconds after turning on the GPS if no fix has been
obtained. If the signal level is low, say less than 30, it is unlikely that a fix will
be obtained and the GPS can be turned off to save power. Furthermore, if the
animal's behaviour is such that it stays in the burrow for a long time, then the
GPS can be left off for a long time.

In summary, the script has a lot of flexibility in operating the GPS but the

primary challenge is to reduce the amount of time the GPS module stays on. If

the script sees anything that suggests the module can't or won't get a fix, it is

better to wait than keep trying.

4.3. Automated Log Downloads
When _RADIO is set to 1, a heartbeat is sent to the base station. If the base

station is in radio range and is not busy with a different tag, it will reply to the

heartbeat and attempt to establish a connection with the tag on a different

channel. If contact is made, the base station will then request any log data it

doesn't already have from this tag (based on tag ID) and the tag will send the

necessary log entries. At the end of the transfer, the base station will instruct

the tag to re-boot. This all happens automatically and doesn't need to be

scripted.

However, if the tag fails to make contact with the base station or loses contact

during the transfer, it will not get re-booted by the base station. In this case

your script needs to time out and continue its normal activities (typically this

would be tracking). Furthermore, even though the log transfer is automatic, the

code that does it needs processing time to execute, so the script must loop

during the transfer. The following example illustrates this:

2000 _RADIO = 1

2010 REM 20s is long enough

2011 REM If contact is made, we will be re-booted

2020 FOR d = 1 to 2000

2030 DELAY 0.01

2040 NEXT

2050 _RADIO = 0

Mataki-Lite EMBASIC Reference 7

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_RADIO = 1 starts the process by sending a heartbeat to the base station. The

loop from line 2020 to line 2040 executes 2000 times, each time with a 0.01 second

(10ms) delay on line 2030. The total time to execute the loop is 20 seconds, after

which _RADIO = 0 will turn off the radio. If contact is made with the base station,

it is likely the tag will be re-booted during the loop, if not the radio will be turned off

after 20 seconds.

An alternative, better method is to use the _CONTACT variable to control the timeout

(see description of _CONTACT in section 5.4):

2000 _RADIO = 1

2010 REPEAT

2020 UNTIL _CONTACT = 0

2030 _RADIO = 0

Hybrids of these two approaches allow both the base station and tag to control the

timeout.

On some base station types, it is possible to upload a new script to the tag once the

logs are sent. Before this happens, the current script is stopped and the whole of

the script upload process is handled by the tag's firmware. If the whole script arrives

at the tag intact, the new script is programmed into the tag's flash memory and the

tag is re-booted, causing it to load and run the new script. If the new script is not

successfully uploaded e.g. because the tag goes out of radio range during the

transfer, the firmware will re-boot the tag and the old script will be used again. On

next contact, the base station will attempt to upload the new script again. This

continues until the new script is successfully uploaded.

IMPORTANT: You must set the script to start automatically (Auto-run ON) when

loaded onto the tag, or the script will stop working after the first successful log

transfer.

In summary, there are 3 cases that your script needs to cater for:

1. The base station is in range. The firmware will upload logs and (optionally)

receive a new script. In this case, your script loop will never end because the

tag will be re-booted.

2. The base station is out of range. In this case, there is no point in leaving the

radio on and the _CONTACT variable allows your script to terminate the loop

early.

3. The base station is initially in range and the log transfer starts, then the tag

goes out of range of the base station. In this case, your loop will terminate

when _CONTACT gets to zero or you may choose to implement your own

timeout.

Mataki-Lite EMBASIC Reference 8

Version 2 Copyright © Debug Innovations Ltd 2018-2019

4.4. Sending and Receiving Private Messages
Mataki-Lite supports sending and receiving private radio messages between tags (as
opposed to sending messages to the base station). Private messages are very
simple to use and can be used for all kinds of purposes. To keep them from
interfering with other tag's log messages, private messages should not use channels

16 and 20 (see _RADCHAN in section 5.4 for more details). In this context, 'Private'

simply means proprietary non-standard messages. They are not encrypted and not
directed to any specific tag. Anyone with a suitable radio or Mataki tag can receive
all private messages.

The following example transmits a "Hello" message every 2 seconds:

10 _RADCHAN = 29

20 _RADTXPWR = 10

30 _RADSPEED = 2

40 _RADIO = 2

50 _RADMSG$ = "Hello"

60 DELAY 2

70 GOTO 50

To enter private message mode _RADIO is set to 2 in line 40, then setting

_RADMSG$ to a string in line 50 will cause the message to be transmitted using the

settings in lines 10-30. A message can be up to 48 characters. If you want to put a
number in the message, use one of the standard BASIC conversion functions e.g.

STR$() to convert it to a string first. If you want a message to go to a specific tag,

the sending script must add some address information to the message e.g. the tag's
ID and your receiving script must look at the messages to decide whether that
message is to be used or discarded.

The following example receives private messages:

10 _RADCHAN = 29

20 _RADSPEED = 2

30 _RADIO = 2

40 REPEAT

50 r$ = _RADMSG$

60 UNTIL r$ <> ""

70 PRINT r$

80 GOTO 40

Reading _RADMSG$ in line 50 copies the message to r$ and clears out the message

so the next time _RADMSG$ is read it gives an empty string. This way a message is

printed on line 70 for each message received. However, this simple system relies on

the transmitting end not sending multiple messages close together as only one

message can be held in _RADMSG$ at a time. If _DBGRADIO = 1, received data will

be printed along with signal strength and frequency offset information to help

develop scripts with private messages.

Mataki-Lite EMBASIC Reference 9

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5. Platform Specific Variables

5.1. Constants

_PI
Pi.

_RADTODEG
Multiply by this to convert Radians to Degrees.

Example:

10 PRINT _PI * _RADTODEG

Prints “180”.

_DEGTORAD
Multiply by this to convert Degrees to Radians.

Example:

10 PRINT 180 * _DEGTORAD

Prints “3.14159”.

_EARTHRM
Radius of the Earth in metres.

_PCBVER
The PCB hardware version.

_VER$
The base firmware version as a string, equivalent to the VER

command.

_PLATFORM$
The platform name: "Mataki-Lite"

Mataki-Lite EMBASIC Reference 10

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.2. Settings

_ID

Access: RWF

The tag ID.

_STDLY

Access: RWF

Start up delay in minutes.

Setting this to a non-zero value will put the tag into its lowest
power state for the specified time when it is powered on.
After the startup delay, the tag runs the script as normal.
The startup delay doesn't occur after a soft reset as might
happen when the base station resets the tag.

A startup delay can be used to get a batch of tags ready in
advance of deployment, if deploying the tags is a time
consuming or regulated process e.g. accessing an island at
high tide. During the startup delay the tag consumes a
negligible amount of power, a small 100mAh battery would
last more than 1 year.

_S1...S4

Access: RWF

These 4 values have no 'meaning' to the tag - they can be
used to store any user value between resets. They are
stored as 32-bit integers with a range of approx. -2 billion to
+2 billion.

Example:

Imagine issuing the following commands in immediate
mode:

> x = 5

> _S1 = 10

When recalled, these would have the values given.

Now, imagine resetting the device and what would
happen when recalling these values:

> ?x

*** Error: Uninitialised variable

> ?_S1

10

The value for _S1 has survived the reset of the device

because it has been saved in flash memory.

Mataki-Lite EMBASIC Reference 11

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_S1$...S2$

Access: RWF

String equivalent to _S1..._S2. Only the first 32 characters

are stored.

See the example above and substitute the numeric values for
strings to see how this can be used.

_OWNER$

Access: RWF

The owner of the device. This string is sent to the base
station to help identify the tag. Only the first 32 characters
are stored.

_STUDY$

Access: RWF

Can be used to identify an experiment group. This string is
sent to the base station to help identify the tag. Only the
first 32 characters are stored in the flash.

_SCRIPTLOCK

Access: RWF

Locks and unlocks the script. When the script is locked, it
cannot be overwritten by the base station. This setting does
not affect the flash loader. Locking the script is useful when
developing new scripts to stop it being overwritten by the
base station. 0 = Unlocked, 1 = Locked.

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

Mataki-Lite EMBASIC Reference 12

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.3. GPS Control

_GPS

Access: RW

Reading _GPS tells you whether the GPS power is on, 1 = on, -

1 or 0 = off.

The value written to _GPS controls the mode of operation.

The following modes are supported:

 -1 : Turns the GPS 1.8V power off. This is the lowest
power mode but the GPS cannot be used. Normally the
GPS is switched on and off with modes 0 and 1 (or 2).
The first time the tag is powered on, the GPS will be in
mode -1. If a startup delay is specified, it will happen
at the minimum current. Once the GPS is set to mode
0, 1 or 2, a tag reset (such as may be triggered by the
base station) will put the GPS back to mode 0 to speed
up re-acquisition of a fix.

 0 : Turns the GPS off (to save power). In mode 0, the
GPS 1.8V power is on but the GPS module is in its
lowest power state. Crucially, the GPS module retains
the satellite almanac and ephemeris data and runs the
real-time clock in mode 0.

 1 : Turns the GPS on and tries to get the GPS time and

a position fix. It is important to continue to set _GPS to

1 in a loop to give the GPS time to get a fix. If a fix is

obtained, _FIXVALID will be set to 1 and the _FIX

variables will contain the current position. The fix will
also be added to the log. Continuing to loop setting

_GPS to 1 will log more positions (tracking).

 2 : Same as 1 but does not log positions. This mode
can be used to obtain a position fix and make decisions
about whether to carry out further actions based on
location e.g. for GEO-Fencing, or the positions can be
processed before logging e.g. averaged or positions
discarded.

_GPSSIGNAL

Access: R

A value which loosely represents the signal strength received
by the GPS module. This is calculated by adding together the
SNR values of the satellites in view. Before the GSV message
is received, this information is unknown, so _GPSSIGNAL has a
value of -1.

See section 4.2 for an explanation of how this variable might
be used to save power.

Mataki-Lite EMBASIC Reference 13

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_FIXLAT

_FIXLON

_FIXALT

Access: RW

The latest GPS fix latitude, longitude and altitude.

Whenever _GPS is written, these variables will be overwritten

with the latest information and can be read by the script. Take

care not to use the values unless _FIXVALID is 1.

If these variables are written by the script, setting _LOGFIX

will create a GPS Fix log entry using the values written. In this
way, a script can read the GPS position then process the values
e.g. averaging them, then write a processed result to the log.

_FIXPDOP

_FIXHDOP

_FIXVDOP

Access: RW

The latest GPS fix 'Dilution of Precision' values (a measure of
fix uncertainty).

These variables can be written and behave the same way as

_FIXLAT above.

_FIXSATS

Access: RW

The number of satellites used in the latest GPS fix.

This variable can be written and behaves the same way as

_FIXLAT above.

_FIXVALID

Access: R

Reading this variable tells you whether the _FIX variables

above are valid, 1=valid, 0=not. To obtain a fix, set _GPS to 1

or 2 in a loop until _FIXVALID is 1.

It is up to the user script to decide whether the fix has a high
enough 'quality' to meet the application requirements. For
example, it is common to require 4 satellites and low DOP
values before considering a fix 'good enough'.

To apply filters such as these, simply wait until _FIXVALID is

1 then check the _FIX variables. If the fix isn't good enough,

loop round until it meets your requirements. Note that in
mode 1, each loop will add an entry to the log, so for this type

of script, use _GPS mode 2, then use _LOGFIX to store the fix

in the log.

Mataki-Lite EMBASIC Reference 14

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_LOGFIX

Access: RW

Reading this variable does nothing and always returns 0.

Setting this to a non-zero value will cause the _FIX variables

to be written to the log as a FIX log type with a fix quality of
the value written. This value can be used to indicate that the
fix was created by the script and may bear no resemblance to
the actual position, or different values can be used for different
algorithms etc. Fix quality is stored as 8 bits. The value for a
normal GPS fix will always be less than 10 so we suggest using
values 10-255.

_DBGGPS

Access: RW

When set to 1, displays extra debug information when the GPS
is on. All the NMEA messages are displayed plus decoded
information.

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

Mataki-Lite EMBASIC Reference 15

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.4. Radio Control

_RADIO

Access: RW

Reading _RADIO tells you whether the radio power is on 1 =

on, 0 = off.

Permissible write values and their actions are:

 0 : Turns the radio off (to save power)
 1 : Turns the radio on and tries to contact the base

station to download the log. This mode is completely
automatic; however the script needs to loop to allow
the processing to happen (see section 4.3).

 2 : Puts the radio into private message mode (see

_RADMSG$ below). This mode is an extremely simple

way of sending short messages between tags for
testing or other purposes. To exit private message
mode, turn the radio off.

 100 : Generates a continuous carrier on the selected
channel at the selected transmit power until the radio is
turned off. This mode is intended for testing and
shouldn't be used in tracking scripts. However it is
possible to generate short CW 'pips' which could be
used with an SSB radio as an emergency locator.

_RADCHAN

Access: RW

The channel to use in modes 2 and 100. Assuming

_FREQBASE is set to 868MHz, channel 0 will be centred on

868MHz. The channel spacing is 50kHz, so channel 1 is at
868.050MHz, channel 2 is at 868.100MHz and so on. There
are 40 channels (0-39) over a 2MHz band (868-870MHz). The

same principle applies to all _FREQBASE settings. The centre

frequency (Fc) in MHz can be calculated from the channel
number (c) as follows:

Fc = _FREQBASE + 0.05c

_RADCHAN is used when _RADIO is set, so it needs to be set

up before changing mode and the radio needs to be turned off
to change channel.

To ensure reliable data transfer and avoid interference
between channels and to other users, it is important to choose
channels carefully. Firstly, local regulations must be adhered
to - these stipulate the allowable frequencies and power levels
for your country. Note that in most countries, it is a criminal
offence to radiate outside the allowed band even if your centre
frequency is inside the band i.e. your transmission is wide
enough to go outside the band.

Mataki-Lite EMBASIC Reference 16

Version 2 Copyright © Debug Innovations Ltd 2018-2019

The data rate (see _RADSPEED below) will determine the

spread of frequencies that the transmitter will generate (known
as the bandwidth of the transmission). For data rate 1 the
bandwidth is less than 50kHz, so each channel can be used
separately from the others. For data rate 2, the bandwidth
takes up 2 channels, so you need to keep these transmissions
at least 2 channels apart and 2 channels from anything else
you need to avoid like the Mataki base station channels 16
(868.8MHz) and 20 (869.0MHz).

Channel 0 should not be used except for carrier testing (mode
100) as half of the transmission's bandwidth will be below
868MHz (and the other half above), which is outside the band
and thus a breach of the regulations. Likewise, channels 1 and
39 cannot be used at data rate 2 as the wider bandwidth will
result in signals below 868MHz and above 870MHz
respectively.

In the UK, the first 600kHz of the band is used by LoRa devices
and is likely to get more congested with the IOT rollout, the
last 300kHz has a 5mW power limit and there are 4 segments
of the band which are reserved for radio alarms. Taking into
account all the restrictions mentioned above, the
recommended private message channels for the UK are 29
(869.45MHz) and 31 (869.55MHz).

Similar restrictions will apply to other countries. If you only

use _RADIO mode 1 and the correct _FREQBASE is used, the

radio will automatically operate within the regulations.

_RADTXPWR

Access: RW

The transmit power to use in modes 2 and 100. The only
permissible values are -30 -20 -10 0 10 12 (all in dBm). Other
values will generate errors or have no effect. In general,
higher transmit powers result in longer range but also use
more battery power. Optimal systems adjust the transmit
power to maintain a connection using the minimum power.

This variable is used when _RADIO is set, so it needs to be set

up before changing mode and the radio needs to be turned off
to change the power setting. The default setting is +10dBm.

Mataki-Lite EMBASIC Reference 17

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_RADSPEED

Access: RW

The radio data rate. In general, lower data rates will give
greater receive sensitivity resulting in greater radio range. This

variable is used when _RADIO is set, so it needs to be set up

before changing mode and the radio needs to be turned off to
change the data rate.

Permissible write values and their actions are:

 1 : Set rate to 1200 baud, GFSK modulation
 2 : Set rate to 38400 baud, GFSK modulation

_RADMSG$

Access: RW

Message to send or receive in mode 2 (private message mode).
Messages are limited to 48 characters of text, though there is
no limit to the number or content of messages that can be
sent. All tags in mode 2 (in radio range) will receive the
message.

Note that the message is not encrypted. If you want to send
secure messages that other receivers cannot decode, you must
encrypt the data in the script before sending it. See section
4.4 for more information.

_RADRSSI

Access: R

The received signal strength for the last private message
received in dBm.

_DBGRADIO

Access: RW

When set to 1, displays extra debug information during radio
activity.

Mataki-Lite EMBASIC Reference 18

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_FREQBASE

Access: RWF

This sets the base (channel 0) frequency for the radio in MHz.
Note that this is not related to the 'base' station in any way. It
is simply the radio frequency the tag uses for channel 0. In

private message mode (_RADIO = 2) the channel can be set

using _RADCHAN. In automated mode (_RADIO = 1) the tag

firmware is in control of the radio channel but still uses the

_FREQBASE setting. So it is critical that _FREQBASE is set

correctly or the tag will not be able to contact the base station.
By default, tags are set to 868MHz. Users are responsible for
setting a suitable frequency for the country of use. We
recommend the following settings:

Europe : 868MHz (default)
USA : 916MHz

The frequency can be checked by reading this variable at the

BASIC prompt by typing ?_FREQBASE and can be set by

typing _FREQBASE=868.2 for example.

Whatever the base frequency setting, the tag may use radio
channels 0-39 which represent a 2MHz band e.g. if

_FREQBASE is 868MHz, the tag may transmit and receive

signals between 868MHz and 870MHz. This has to be taken

into consideration when setting _FREQBASE.

Changes in this value require a re-boot to take effect.

Consequently _FREQBASE cannot be used to change radio

frequency during operation. It is designed to set the operating
frequency for the life of the tag, based on the country of use.

_FREQCAL

Access: RWF

This is a factory calibration value for the radio. It is the offset
for the base frequency in Hz with a range of -25kHz to 25kHz.
We recommend you don't change this value unless you have
the equipment to measure and set it again. Changes in this
value require a re-boot to take effect.

Mataki-Lite EMBASIC Reference 19

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_CONTACT

Access: R

In automated mode (_RADIO = 1), this read-only value says

how many seconds are left before the tag should timeout on its
radio operations. It is initially set to a small value when the
radio is turned on and then set to a value given by the base
station any time there is radio activity.

When there is no radio activity, the value counts down each
second until it reaches zero, at which point the script should
turn off the radio to save power.

By following this algorithm, tags which are out of radio range
of the base station will only turn on the radio for a few seconds
before giving up and tags which lose contact while
communicating with the base station also timeout quicker than
they would if a fixed timeout was used. This saves battery
power.

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

Mataki-Lite EMBASIC Reference 20

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.5. Log Control

_LOGCLEAR

Access: RW

Set to 1 to clear the log. This also sets _LOGNUM to 0.

_LOGUSED

Access: R

The number of log entries used

_LOGCAP

Access: R

The total log capacity

_LOGFIX

Access: RW

See section 5.3 GPS Control.

_LOG$

Access: RW

Writing a string to this variable causes a log entry to be
written with that text. There is only enough space in a log

entry for 18 characters. This also causes _LOGNUM to be set

to the new value of _LOGUSED (the last log entry).

Reading this variable returns a string containing the log entry

at the index given by _LOGNUM. This is not the same as the

string written with _LOG$. If _LOGNUM is not a valid entry

number, then the returned string is empty.

See section 2.1 for further information.

_LOGNUM

Access: RW

Determines which log entry is returned when _LOG$ is read.

Valid values are 1 to _LOGUSED.

On start up this points to the last log entry.

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

Mataki-Lite EMBASIC Reference 21

Version 2 Copyright © Debug Innovations Ltd 2018-2019

Analogue Inputs

_LIGHT

Access: RW

Reading this variable causes a light reading to be taken.

The value is an ADC reading in the range 0-4095.

The meaning of the reading is application dependant but it
can be used to detect dawn/dusk or an animal in a burrow.

Writing 1 to this variable causes a light reading to be logged.

_VBATT

Access: RW

Reading this variable causes a battery voltage reading to be
taken.

The value is in Volts.

Writing 1 to this variable causes a battery voltage reading to
be logged.

The battery voltage will be dependent to some extent on the
load, so whether the GPS or radio are on is likely to affect the
reading.

_SEASENSE

Access: R

Reading this variable causes a sea sense reading to be taken.

The value is an ADC reading in the range 0-4095.

This is connected to a pin on the tag's edge connector and
pulled up to 3.3V with a 30k resistor. If the edge connector
is exposed and dipped in sea water, the ADC reading will go
down. In this way, a tag can detect a bird diving in the sea.

Salt residue will tend to keep the value lower for a while, so
we recommend experimenting with this feature to find a
suitable threshold if you plan to use it.

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

Mataki-Lite EMBASIC Reference 22

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.6. Time and Date

_UPTIME

Access: R

The time since reset in seconds.

_SLEEP

Access: RW

Reading this variable gives the time spent sleeping in
seconds.

Writing to this variable puts the tag in a low power state for
the number of seconds specified. Sleep times are rounded
down to the nearest second (the part after the decimal point
is ignored).

The tag should be put into a sleep state whenever it is
inactive to save battery power. Before going to sleep, turn

off the GPS and radio, see _GPS and _RADIO.

In sleep mode, the CPU stops running the script and
messages from the GPS and radio are ignored. Sleep
terminates when the sleep time has passed or the user
presses a key on the PuTTY terminal. The key press itself is
discarded so, if you want to get a key input from sleep mode,
you need to press the key twice and read the key after the

_SLEEP as in the following example:

 10 REPEAT

 20 _SLEEP = 10

 30 a$ = INKEY$

 40 UNTIL a$ = "C"

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

See also the EMBASIC keywords CLOCK, DELAY, TIMER, TIME$ and DATE$.

Mataki-Lite EMBASIC Reference 23

Version 2 Copyright © Debug Innovations Ltd 2018-2019

5.7. Other Controls

_RESET

Access: RW

When read, gives the reason for the last reset. Valid reasons
are:

 0 : Unknown (a normal power up)
 1 : Watchdog triggered

 2 : Reset request (_RESET=1 or base station)

Writing 1 to this variable resets the device.

_LED

Access: RW

Controls the User LED (red), 0 = Off, 1 = On.

_SUPPLEDS

Access: RW

Controls the Debug LEDs on the support board, 8 bits, one
for each LED.

Note that these LEDs cannot be used at the same time as

_TP3/_TP4.

_SUPPLED

Access: RW

Controls a user LED on the support board, 0 = Off, 1 = On.

_SUPPCONN

Access: R

Tells you whether the tag is plugged into a support board, 1
= Inserted, 0 = Not.

Mataki-Lite EMBASIC Reference 24

Version 2 Copyright © Debug Innovations Ltd 2018-2019

_TP1/_TP2

Access: RW

Reading _TP1 or _TP2 returns the current output state.

Writing 1 or 0 to these variable sets the test points 1 and 2
high or low.

For minimum power consumption test points should be high.
This is important if your deployed script uses the test points
as it will affect the battery life.

_TP3/_TP4

Access: RW

Similar to _TP1/_TP2 except that the test points are on the

support board. These pins have test point loops which can
easily be connected to a scope probe. These pins are shared

with the Debug LEDs and _SUPPLEDS cannot be used at the

same time.

Access: R – Value can be read W – Value can be written to
 F – Value is stored in the flash memory between power cycles

If test points are used to control other electronics, please note that test points have 10k

pull-up resistors on them, so they consume extra power when low. The electronics should

be designed to be driven by low pulse signals which stay high most of the time for lowest

power consumption. Under no circumstances should the test points be externally driven

(used as inputs).

In addition to the obvious requirement not to connect 2 outputs together, the CPU reads the

state of the test points at reset and both pins must be high or the CPU will not boot. It can

be difficult to meet this requirement if the external circuitry is powered off when the CPU

boots as ESD protection diodes inside the (powered off) device will conduct and stop the

signals being pulled up to 3.3V. Robust solutions are possible but will likely require discrete

transistors or special devices. Please contact us if you need advice.

Mataki-Lite EMBASIC Reference 25

Version 2 Copyright © Debug Innovations Ltd 2018-2019

6. EMBASIC Reference

6.1. Keywords

ABS
Returns the absolute value of a numeric value.

Syntax:

ABS(x)

Example:

10 PRINT ABS(10)

20 PRINT ABS(-5)

Prints “10” and “5”.

ASC
Returns the ASCII code for the first character of a string.

See also CHR$ which does the opposite conversion.

Syntax:

ASC(x$)

Example:

10 PRINT ASC("Hello")

Prints “72” (72 is the ASCII code for ‘H’).

Mataki-Lite EMBASIC Reference 26

Version 2 Copyright © Debug Innovations Ltd 2018-2019

ATN
Returns the trigonometric arctangent of a numeric value in
radians.

See also TAN, SIN and COS.

Syntax:

ATN(x)

x is a value in radians.

To convert the result to degrees, multiply by _RADTODEG.

Example:

10 x = ATN(10)

20 PRINT "Arctan 10 (rad): " ; x

30 x = x * _RADTODEG

40 PRINT "Arctan 10 (deg): " ; x

Prints “Arctan 10 (rad): 1.47113” and “Arctan 10 (deg):
82.2894”.

BEEP
If a PuTTY terminal is connected, then a short beep is played.
Otherwise, has no effect.

Example:

10 IF x > 10 THEN BEEP

Terminal beeps when x is larger than 10.

Mataki-Lite EMBASIC Reference 27

Version 2 Copyright © Debug Innovations Ltd 2018-2019

BREAK
Exits a FOR..NEXT or REPEAT..UNTIL loop early.

Not legal in immediate mode.

The end of the loop must be further down the program (at a
higher line number). Will give error “Can't BREAK out of loop” if
the end of the loop cannot be found.

Example:

10 FOR i = 1 TO 10

20 IF i > 5 THEN BREAK

30 PRINT i

40 NEXT

Prints the values 1 to 5.

CHR$
Converts an ASCII code to its equivalent character.

Returns ‘?’ if character is not in the range 0-255.

See also ASC which does the opposite conversion.

Example:

10 PRINT CHR$(72)

Prints the character ‘H’.

Mataki-Lite EMBASIC Reference 28

Version 2 Copyright © Debug Innovations Ltd 2018-2019

CLOCK
Returns the whole number of seconds since midnight on 1
January 1970. This is a read-only value.

All time/date values are in UTC because the time is obtained
from the GPS satellites.

CLOCK is useful for measuring elapsed time. Unlike TIMER

which is also supported and is a common feature of other BASIC

variants, CLOCK doesn't reset to zero at midnight, so events that

span midnight can be safely timed simply by taking an initial

copy of CLOCK at the start, one at the end and subtracting to get

the duration in seconds.

Note that, in common with all the other timer functions, if the
GPS time has not been obtained e.g. on first switch on, then the
time will be wrong and scripts should be written to expect this
and anticipate a sudden time jump when the time is obtained.

Example:

10 t1 = CLOCK

20 DELAY 20

30 t2 = CLOCK

40 PRINT "Duration: "; t2 - t1; "seconds"

CLS
Clears all text from the PuTTY terminal display.

Example:

10 CLS

Mataki-Lite EMBASIC Reference 29

Version 2 Copyright © Debug Innovations Ltd 2018-2019

COLOR
Used with PRINT to change the text colour.

The supported values and their colours are:

0 Default (Grey)

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

Example:

10 PRINT COLOR(1) ; "Red" ; COLOR(0);

 "Normal"

Prints “Red” in red, and “Normal” in the default colour.

CONT
Resumes a program after it has been stopped by the escape key

or with STOP.

Not legal while running.

Example:

The following program prints “Hello” then stops.

10 PRINT "Hello"

20 STOP

30 PRINT "Goodbye"

When we run it, it produces the following output...

> RUN

Hello

STOP at line 20

Then we can continue from where it was left off by typing

CONT as follows...

> CONT

Goodbye

Mataki-Lite EMBASIC Reference 30

Version 2 Copyright © Debug Innovations Ltd 2018-2019

COS
Returns the trigonometric cosine of a numeric value in radians.

See also ATN, SIN and TAN.

Syntax:

COS(x)

x is a value in radians.

To convert the return value to degrees, multiply by _RADTODEG.

Example:

10 PRINT COS(0)

20 PRINT COS(_PI / 2)

30 PRINT COS(_PI)

40 PRINT COS(3 * _PI / 2)

Prints “1”, “0”, “-1”, and “0”.

Mataki-Lite EMBASIC Reference 31

Version 2 Copyright © Debug Innovations Ltd 2018-2019

DATA
Stores numeric and string constants that can be accessed by the

READ command.

Syntax:

DATA [const1][,const2][,const3]...

DATA statements are read in the order they occur starting with

the statement at the lowest line number. Each value is read in
the order given until all the values have been read, then the next

DATA statement is located and reading continues. The RESTORE

command can be used to reset the read order.

Any number of DATA statements can be placed anywhere in a

program. The values must be constants and can be of numeric
or string type. The type being read must match the variable

type in the READ statement or a "Type Mismatch" error occurs.

It is good practice to always use quotes around strings in DATA

statements. Quotes are only strictly required if the string a)
contains commas b) contains leading or trailing spaces that are
required to be read or c) contains BASIC keywords.

The READ command can come before or after the DATA it is

reading. If the program runs through a DATA section it is

treated the same as REM i.e. the whole line is ignored/skipped.

Has no effect in immediate mode.

Examples:

10 DATA "Apple", "Banana", "Cherry"

20 READ A$, B$, C$

30 PRINT A$, B$, C$

Prints the types of fruit stored by DATA

10 READ N$, H

20 DATA "Alice", 158

30 PRINT N$; " – " ; H ; "cm"

An example where READ has been used before DATA and

multiple data types have been used.

Prints “Alice - 158cm”

Mataki-Lite EMBASIC Reference 32

Version 2 Copyright © Debug Innovations Ltd 2018-2019

DATE$
Returns a string representation of the date in the format “DD-
MM-YYYY”. This is a read-only value.

All time/date values are in UTC because the time is obtained
from the GPS satellites.

See also TIME$.

Example:

10 PRINT DATE$

DELAY
Waits for the given number of seconds. The value can be given
in fractions of a second.

On the emulator (Windows) the actual delay is accurate to
around 20ms. On a Mataki-Lite tag the delay is accurate to
around 2ms.

DELAY does not depend on the current time, so it is safe to use

DELAY while the GPS is on. Time corrections obtained from the

GPS will not affect the duration of DELAY.

During the delay, Mataki-Lite consumes approx. 4.2mA (with the
GPS and radio turned off) so it is not recommended that scripts

have long delays. For long delays, use _SLEEP.

NOTE: When delayed, some system routines will not be
serviced. For this reason it’s better to have many small delays
rather than one large one.

See also _UPTIME, CLOCK, TIMER, TIME$ and DATE$.

Example:

10 PRINT "Hello"

20 DELAY 0.5

30 GOTO 10

Prints “Hello” every 0.5 seconds.

Mataki-Lite EMBASIC Reference 33

Version 2 Copyright © Debug Innovations Ltd 2018-2019

DIM
Declares an array variable and allocates memory for it.

Syntax:

DIM variable(size)

The array can be indexed from 0 up to and including size.

Gives an “Out of memory” error if too much memory has been
dimensioned.

Gives “Redimensioned array” error if an array variable with the
same name already exists.

Example:

10 DIM x(10)

20 FOR i = 0 TO 10

30 x(i) = i * 2

40 NEXT i

Creates an array of length 11 and fills it with the even
numbers from 0 to 20.

END
Terminates the program and returns to the prompt. This is
optional at the end of the script (highest line number), as
EMBASIC exits automatically when reaching the end of the script.
However, it is more normal to have subroutines at the end of a

script, so END is needed between the main program and the start

of the subroutines.

Not legal in immediate mode.

It is strongly recommended that this is only used in testing and
not in any deployed script because going back to the prompt
while running means the tag will never manage to start the script
again, effectively leaving the tag completely idle until it runs out
of battery. All deployed scripts should loop forever.

Example:

... <set x to something>

10 IF x > 10 THEN END

20 PRINT "Still going!"

Exits early if x is greater than 10. Otherwise prints “Still

going!”.

Mataki-Lite EMBASIC Reference 34

Version 2 Copyright © Debug Innovations Ltd 2018-2019

EXP
Returns the mathematical constant e raised to a given exponent.

Syntax:

EXP(x)

Example:

10 PRINT EXP(5)

Prints “148.413”.

FILES
Returns files ending “.bas” in current directory. Equivalent to the
MSDOS command "DIR *.bas".

Only supported on emulations, not on tags.

Not legal while running.

FIX
Rounds a given numeric value by truncating the non-integer
component (rounds toward zero).

FIX simply crops off the decimal point leaving the integer and its

sign. For example, -1.6 becomes -1, 12.4 becomes 12.

See also INT and ROUND.

Examples:

10 PRINT FIX(10.257)

Prints “10”.

10 PRINT FIX(-19.1)

Prints “-19”.

Mataki-Lite EMBASIC Reference 35

Version 2 Copyright © Debug Innovations Ltd 2018-2019

FOR
TO

STEP

NEXT

Loops through a block of instructions a given number of times
adjusting the value of a variable on each loop.

Syntax:

FOR variable = start TO end [STEP amount]

 .

 . <looped instructions>

 .

NEXT [variable][,variable2]...

The block of instructions executed on each loop is contained

between the FOR and NEXT statements. The value of

variable changes on each loop.

start is the initial value for variable

end is the final value for variable at which the loop will exit

amount is how much to increment variable by on each loop

start, end and amount can be constants or expressions

containing other variables.

If STEP is not specified, a default increment of 1 is used. If

amount is negative, the variable will count down and the value

of end must be less than start.

The most common use of a FOR..NEXT loop is to do something

a fixed number of times. For example...

10 FOR x = 1 TO 10

20 PRINT x

30 NEXT

40 PRINT "Done, x="; x

Prints the values 1 to 10, then "Done, x=11"

On the first loop, x is 1. When NEXT is reached, 1 is added to x

(the default STEP) and, because x is less than 10, execution

jumps to the FOR statement. On the second loop, x is 2 and so

on. When x reaches 10, NEXT adds on 1 and the exit condition

is met. After the loop terminates, the final value of x is 11.

In practice, variable can start and end at any value and be

changed by any value on each loop. For example...

10 FOR r = 0 TO (2 * _PI) STEP (_PI / 20)

20 x = SIN(r)

30 y = COS(r)

40 NEXT

Computes 40 x and y coordinates describing a circle

Mataki-Lite EMBASIC Reference 36

Version 2 Copyright © Debug Innovations Ltd 2018-2019

(strictly speaking 41 points because 2*pi is included)

The loop exit condition is checked when the program execution

reaches the NEXT statement. Therefore the instructions in the

loop will always be executed at least once regardless of the exit

condition e.g. FOR x = 1 TO 0 will execute once.

If NEXT has a variable specified, the most recent FOR

statement with that variable be used as the loop.

If NEXT has no variable specified, the most recent FOR

statement with any variable will be used as the loop.

In the case of nested FOR loops, a list of variables can be

specified in the NEXT statement, the first of which is the inner-

most loop, progressing outward.

variable can be read and used during the loop for any

purpose. If variable is written to during the loop, the exit

condition will be evaluated when the program execution reaches

the NEXT statement and, if the exit conditions are met, the loop

will terminate. This is one way to terminate a FOR..NEXT loop

early, see also BREAK.

Do NOT jump out of a FOR..NEXT loop using GOTO unless you

always jump back in. The interpreter creates special variables to

keep track of FOR..NEXT loops which are deleted when the loop

exits, so jumping out will result in more and more variables being
used and eventually the program will crash due to lack of
memory. As long as the loop is terminated by executing the

NEXT statement, or causing a jump to NEXT with BREAK, all will

be ok.

Examples:

10 FOR i = 20 TO 0 STEP -2

20 PRINT i

30 NEXT

Counts backwards printing all the even numbers from 20
to 0

10 FOR i = 1 TO 5

20 FOR j = 1 to i

30 PRINT i

40 NEXT j, i

Nested loops. Prints the values ‘1’ once, ‘2’ twice and so
on to 5.

Mataki-Lite EMBASIC Reference 37

Version 2 Copyright © Debug Innovations Ltd 2018-2019

GOSUB
RETURN

GOSUB branches to a subroutine and RETURN exits the

subroutine returning to the next statement after the GOSUB.

Subroutines are used to avoid re-writing the same block of code
multiple times in a program. Instead the code is 'called' upon
when required from each place it is needed and the subroutine
jumps back to the calling place when done.

Subroutines can be 'nested'. For example, a program can call
subroutine 1 and subroutine 1 can call subroutine 2 with another

GOSUB. The RETURN at the end of subroutine 2 will go back to

subroutine 1 and the RETURN at the end of subroutine 1 will go

back to the original caller.

Not legal in immediate mode. See also ON...GOSUB.

Syntax:

GOSUB line

 .

 .

 .

RETURN

line is the line number where a subroutine can be found. If

line doesn't exist, the pre-run checks should stop you starting

the program.

Example:

10 PRINT "Out of the subroutine"

20 GOSUB 1000

30 PRINT "And back out again"

40 END

1000 PRINT "In the subroutine"

1010 RETURN

Prints “Out of the subroutine”, “In the subroutine”, “And

back out again”. The END statement on line 40 stops the

program from executing the subroutine code again.

Mataki-Lite EMBASIC Reference 38

Version 2 Copyright © Debug Innovations Ltd 2018-2019

GOTO
Jumps to a given line number.

Not legal in immediate mode. See also ON...GOTO.

Syntax:

GOTO line

line is the line number to jump to. If line doesn't exist, the

pre-run checks should stop you starting the program.

Example:

10 IF x <> 5 THEN GOTO 40

20 PRINT "x is 5"

30 END

40 PRINT "x is not 5"

Prints “x is 5” when x is 5, otherwise prints “x is not 5”.

HELP
Prints a list of valid commands, functions and platform-specific
variables.

Not legal while running.

HEX$
Returns a string representation of a numeric value converted to
hexadecimal.

See also STR$.

Syntax:

HEX$(x)

x is a numeric value. Is rounded down if not an integer.

Example:

10 x = 255

20 PRINT x ; " decimal is " ;

 PRINT HEX$(x) ; " hexadecimal"

Prints “255 decimal is FF hexadecimal”.

Mataki-Lite EMBASIC Reference 39

Version 2 Copyright © Debug Innovations Ltd 2018-2019

IF
THEN

ELSE

Conditionally executes statements based on the result of a
conditional expression.

Syntax:

IF expression THEN statements [ELSE

statements]

IF expression GOTO line [ELSE statements]

If the result of expression is non-zero when evaluated, then

the statements following THEN will be executed or the GOTO

will be followed to line.

Otherwise, if statements after ELSE are present, they will be

executed instead.

statements are separated with a colon.

Please check the known issues section for problems surrounding
string and numeric expression evaluation order.

Examples:

10 a$ = "A"

20 b$ = "B"

30 IF a$ = b$ THEN PRINT "Matching" ELSE

 PRINT "Different"

Compares two strings and prints “Matching” if they are
the same, or “Different” if they are different.

10 IF (x < 5) OR (y < 5) THEN x = x + 1 :

 y = y + 1 ELSE PRINT "Done"

More complex expression and multiple statements. If x

or y are less than 5, then add one to each. Otherwise

print “Done”.

10 x = 10

20 IF x > 5 GOTO 40

30 PRINT “Don’t print this”

40 PRINT “Print this line”

Example of GOTO. Jumps over line 30 and prints “Print

this line”.

Mataki-Lite EMBASIC Reference 40

Version 2 Copyright © Debug Innovations Ltd 2018-2019

INKEY$
Returns one character read from the keyboard.

Unlike INPUT which buffers the characters and waits for a return

key, INKEY$ returns immediately whether or not a key has been

pressed. This allows the script to continue running.

If no key has been pressed, INKEY$ returns an empty string. If

a number of keys have been pressed, INKEY$ returns the first

character then the next character etc.

Examples:

10 REPEAT

20 x$ = INKEY$

30 UNTIL x$ = " "

40 PRINT "You pressed the space bar"

Prints “You pressed the space bar” when the user presses
the space bar.

Mataki-Lite EMBASIC Reference 41

Version 2 Copyright © Debug Innovations Ltd 2018-2019

INPUT
Takes some user input from the terminal. This pauses the
program whilst waiting for input, then resumes when the user
hits the return key.

Syntax:

INPUT [prompt;]var1[,var2]...

INPUT [prompt,]var1[,var2]...

prompt is an optional string that prompts the user for the input

that is required. Follow prompt with a semicolon for it to be

printed with a question mark afterwards, or with a comma to

suppress the question mark. var1, var2... is a list of

variables to save the user data into. var1 is required.

INPUT can accept string inputs, but there must only be one and

it must be in the last position in the list of input variables.
Multiple inputs must be separated by commas and they are
saved to their respective variables. If the user inputs less data

than required, INPUT will prompt again for the missing data.

Do not use this in a deployed script, as the tag will go indefinitely
idle waiting for a user input. This is provided solely for testing.

Examples:

10 INPUT "Please input two triangle side

 lengths: ", a, b

20 PRINT "Hypotenuse is: " ; SQR(SQ(a) +

 SQ(b))

Calculates and prints the hypotenuse of a right-angled
triangle from the two other sides as inputs. Example run
below...

> RUN

Please input two triangle side lengths: 1,

1

Hypotenuse is: 1.41421

10 INPUT "What is your weight in kilos and

 name"; w, n$

20 PRINT "Hello " ; n$; ", you weigh " ;

 w * 2.2 ; " pounds."

Asks for a user’s name and weight in kilos then prints the
name and weight in pounds. Example run below...

> RUN

What is your weight in kilos and name? 70,

Bob

Hello Bob, you weigh 154 pounds.

Mataki-Lite EMBASIC Reference 42

Version 2 Copyright © Debug Innovations Ltd 2018-2019

INT
Rounds a given numeric value down to the next integer.

For example, 3.9 becomes 3 and -5.1 becomes -6.

See also FIX and ROUND.

Examples:

10 PRINT INT(10.257)

Prints “10”.

10 PRINT INT(-19.1)

Prints “-20”.

LEFT$
Returns the leftmost n characters of a string.

See also RIGHT$ and MID$.

Syntax:

LEFT$(x$, n)

x$ is an input string. n is the number of characters to read from

the left.

If n is greater than or equal to the length of x$ then the whole

string is returned.

Example:

10 PRINT LEFT$("Hello world", 5)

Prints “Hello”.

Mataki-Lite EMBASIC Reference 43

Version 2 Copyright © Debug Innovations Ltd 2018-2019

LEN
Returns the number of characters in a string.

Non printing characters and spaces are counted.

Example:

10 PRINT LEN("Hello ")

Prints “6”.

LET
Assigns a value to a variable.

Syntax:

[LET] variable = expression

variable can be of numeric type e.g. "A", of string type e.g.

"A$" or be an array element e.g. "A(2)". Constants cannot be
assigned to.

expression can contain variables, constants, functions,

arithmetic, logical and relational operators plus brackets and type
conversion functions. However the result of the calculation must

be of the same type as variable. An attempt to assign a

string value to a numeric variable or vice-versa will give a "Type
Mismatch" error.

LET is the only optional keyword in BASIC. The absence of a

keyword at the start of the line implies LET.

The following two statements have the same effect:

LET x = 5

x = 5

Mataki-Lite EMBASIC Reference 44

Version 2 Copyright © Debug Innovations Ltd 2018-2019

LIST
Displays the current program.

Not legal while running.

Syntax:

LIST [start][-][end]

start and end are optional values that specify line numbers to

print between.

 LIST lists all lines of the program

 LIST start lists just the one line specified

 LIST start-end lists all lines from start to end

 LIST start- lists all lines from start onwards

 LIST –end lists all lines up to end

The specified line numbers don't need to exist in the program,

LIST will choose the closest start and end lines.

LOAD
Loads an EMBASIC script in the emulation.

Always returns “Error: File not found” on Mataki-Lite tags, as
there is no file system. Use the script loader utility to load new
scripts on to tags.

Not legal while running. See also SAVE.

Syntax:

LOAD "filename"

On the tag emulation, loads an program with the name

filename.bas. The file path can be included in the name if it

is not in the current directory. Returns “Error: File not found” if
the file could not be located.

Do not include the .bas extension for the script in filename.

Mataki-Lite EMBASIC Reference 45

Version 2 Copyright © Debug Innovations Ltd 2018-2019

LOG
Returns the natural logarithm of the given numeric value.

Given value must be positive.

Example:

10 PRINT LOG(10)

Prints “2.30259”.

LOWER$
Returns the given string with all upper-case characters converted
to lower-case.

See also UPPER$.

Example:

10 PRINT LOWER$("HeLlO wOrLd”)

Prints “hello world”.

Mataki-Lite EMBASIC Reference 46

Version 2 Copyright © Debug Innovations Ltd 2018-2019

MID$
Returns part of a string starting from a given position and length.

See also LEFT$ and RIGHT$.

Syntax:

MID$(x$, n, length)

x$ is the string to be operated on. n is the position to start the

substring. length is how many characters to read to make the

returned substring.

If n is less than 1, then n is considered the same as 1. If n is

greater than the length of x$ then n is considered the same as

the position of the last character of x$. If length is greater

than the remaining length of the string, then the returned

substring is from n to the end of x$.

Examples:

10 x$ = "Alice, Bob"

20 PRINT MID$(x$, 1, 5)

30 PRINT MID$(x$, 8, 100)

Prints “Alice” and “Bob”.

NEW
Deletes the program currently stored and all the variables in use.
On Mataki-Lite this does not remove the script from the flash
memory.

Not legal while running.

Example:

> LIST

10 PRINT "A script about to be deleted"

20 x = 1

30 y = 2

> NEW

> 10 PRINT "New script!"

> LIST

10 PRINT "New script!"

Mataki-Lite EMBASIC Reference 47

Version 2 Copyright © Debug Innovations Ltd 2018-2019

OLD
Restores a program deleted by NEW.

OLD is only valid immediately after NEW. As soon as any

program lines are typed or a program is loaded, OLD cannot

restore the previous program.

Not legal while running.

Gives error “Can't restore old program” if unable to load the old
program.

Mataki-Lite EMBASIC Reference 48

Version 2 Copyright © Debug Innovations Ltd 2018-2019

ON
GOTO

GOSUB

Jump to a different line or subroutine in a list depending on the
result of an evaluated expression.

Not legal in immediate mode. See also GOTO and GOSUB.

Syntax:

ON expression GOTO line1[,line2]...

ON expression GOSUB line1[,line2]...

Follow the GOTO/GOSUB to the line at the position evaluated by

expression in the list of lines.

If expression evaluates to a value not in the list of lines, then

the program continues.

Examples:

10 x = 1

20 ON x GOTO 40, 60

30 END

40 PRINT "x was 1"

50 END

60 PRINT "x was 2"

If x is 1 then print “x was 1”, if instead x is 2 then print

“x was 2”. Any other value of x does nothing.

10 FOR x = 1 TO 3

20 ON x GOSUB 1000, 1100, 1200

30 NEXT

40 END

1000 PRINT "First message"

1010 RETURN

1100 PRINT "A different message"

1110 RETURN

1200 PRINT "One more for good luck"

1210 RETURN

Loops through all values of x from 1 to 3 printing

different messages.

Mataki-Lite EMBASIC Reference 49

Version 2 Copyright © Debug Innovations Ltd 2018-2019

POS
Returns the current position of the text cursor on the screen
where position 1 is the first (left most) column.

Syntax:

POS(x)

x is a dummy parameter and can be any value.

Example:

10 PRINT "The position of this space ->";

20 x = POS(0)

30 PRINT " <- is " ; x

Prints “The position of this space -> <- is 30”

PRINT
Outputs characters to the PuTTY terminal.

Syntax:

PRINT [expression1][;/,]

 [expression2][;/,]...

All expressions are evaluated before being printed.

Expressions can be separated with:

;
Next expression is printed
immediately after the last

Space(s)
Next expression is printed
immediately after the last

,

Next expression is printed in next
tab stop (next multiple of 8 chars
from the start, which is useful for
lining things up in columns)

If no expressions are given, then a blank line is printed.

Unless the statement ends with a semicolon or comma, a
carriage return/line feed is automatically added.

Mataki-Lite EMBASIC Reference 50

Version 2 Copyright © Debug Innovations Ltd 2018-2019

A question mark can be used instead of the PRINT command in

immediate mode. This is converted to a PRINT when stored in

the script.

Example:

10 h$ = "Hello"

20 w$ = "world"

30 PRINT "Hello world"

40 PRINT "Hello " "world"

50 PRINT "Hello " ; "world"

60 PRINT h$; " " ; w$

Prints “Hello world” a number of times, even though each
has a slightly different approach.

10 a$ = "Alice"

20 b$ = "Bob"

30 x$ = "Apple pie"

40 y$ = "Biscuits"

50 PRINT "Name" , "Favourite food"

60 PRINT "-------------------------"

70 PRINT a$, x$

80 PRINT b$, y$

Prints a table of people and their favourite foods.

RANDOMIZE
Re-seeds the random number generator used by RND.

RANDOMIZE controls the initial starting point for random

numbers generated by RND. However different tasks require

different types of random number.

Sometimes you want a pseudo-random sequence that is the
same every time. For example to set a board with random
pieces but have two players use the same board, the seed value

used by RANDOMIZE is effectively the board number. With the

same board number you always get the same pattern of pieces.

Other times you want a truly random pattern of numbers which

is different each time. For this, use CLOCK as the seed.

Example:

10 RANDOMIZE(123)

20 PRINT RND

Prints “0.339305”

Mataki-Lite EMBASIC Reference 51

Version 2 Copyright © Debug Innovations Ltd 2018-2019

READ
Used to read information from DATA statements. DATA

statements can be anywhere in the program

Syntax:

READ var1[,var2]...

The list of variables corresponds to a subset of the information

stored by DATA. The type of data must match the variable type

or a "Type Mismatch" error will occur.

Multiple uses of READ will run through the available DATA,

incremented by the number of variables read. See the third
example to see how this works.

See RESTORE on how to move back to the start of the current

DATA or change where DATA can be found.

If the trying to read past the end of DATA then the error “Out of

DATA” is given.

Example:

10 DATA "Apple", "Banana", "Cherry"

20 READ A$, B$, C$

30 PRINT A$, B$, C$

Prints the types of fruit stored by DATA

10 READ N$, H

20 DATA "Alice", 158

30 PRINT N$; " – " ; H ; "cm"

An example where READ has been used before DATA and

multiple data types have been used. Prints “Alice -
158cm”

10 DATA "Alice", 158, "Bob", 176,

 "Carol", 164

20 FOR i = 1 TO 3

30 READ N$, H

40 PRINT N$; " – " ; H ; "cm"

50 NEXT

An extension to the last example where DATA is traversed

with multiple calls to READ and prints “Alice - 158cm”,

“Bob - 176cm”, and “Carol - 166cm”.

Mataki-Lite EMBASIC Reference 52

Version 2 Copyright © Debug Innovations Ltd 2018-2019

REM
Allows explanatory remarks to be made in the program.

Syntax:

REM comment

The text in comment and any statements after comment are

ignored/skipped when running. This is so that REM can be used

to temporarily disable a line of code without losing the code.

REM may also be used at the end of a line. Note that it cannot be

used at the end of a DATA line, as it would be considered valid

data.

Example:

10 REM This is a regular comment

20 REM PRINT "Don’t print this"

30 PRINT "Print this" REM Comment after a

 line

Prints “Print this”, ignoring valid code after REM.

Mataki-Lite EMBASIC Reference 53

Version 2 Copyright © Debug Innovations Ltd 2018-2019

REPEAT
UNTIL

Executes a series of lines until a final condition is met.

Syntax:

REPEAT

 .

 .

 .

UNTIL expression

The lines between REPEAT and UNTIL will be executed at least

once. expression is evaluated when UNTIL is reached. If

expression evaluates to zero, then the current program

position moves back to the corresponding REPEAT. Otherwise,

the program continues.

Take care when writing REPEAT/UNTIL loops, as it’s easily

possible to get stuck inside them forever waiting for conditions
that never occur. When waiting for real-world events like a radio
message, which may or may not happen, it is imperative there is
always a timeout condition in addition to any other conditions.
See the second example below.

The BREAK command can be used to exit a loop early.

Please check the known issues section for problems surrounding
string and numeric expression evaluation order.

Example:

10 REPEAT

20 x$ = INKEY$

30 UNTIL x$ <> ""

40 PRINT "You pressed " ; x$

Waits for the user to press a key then prints the key
pressed.

10 timeout = CLOCK + 3

20 REPEAT

30 x$ = INKEY$

40 IF x$ <> "" THEN BREAK

50 UNTIL CLOCK > timeout

60 IF x$ = "" THEN PRINT "Too slow!" ELSE

 PRINT "Congratulations!"

Press any key before 3 seconds elapse to get a
congratulated. Demonstrates a timeout.

Mataki-Lite EMBASIC Reference 54

Version 2 Copyright © Debug Innovations Ltd 2018-2019

RESTORE
Moves the point READ gets DATA from.

Syntax:

RESTORE [line]

When line is omitted, the current DATA read point is moved

back to the first DATA statement in the program.

If line is specified, then the current DATA read point is moved

to the next DATA statement on or after line.

If the line cannot be found, then the error “Line not found” is

given.

Examples:

10 DATA One, Two, Three

20 FOR i = 1 TO 3

30 READ x$

40 PRINT x$

50 NEXT

60 RESTORE

70 GOTO 20

Prints “One”, “Two”, and “Three” repeatedly forever. Line

60 causes the READ command to start back at “One”.

10 DATA One, Two, Three

20 DATA Four, Five, Six

30 READ x$, y$, z$

40 PRINT x$; y$; z$

50 RESTORE 20

60 READ x$, y$, z$

70 PRINT x$; y$; z$

Prints “One”, “Two”, “Three”, “Four”, “Five”, and “Six”.

This demonstrates multiple lines of DATA, switched

between with RESTORE.

Mataki-Lite EMBASIC Reference 55

Version 2 Copyright © Debug Innovations Ltd 2018-2019

RIGHT$
Returns the rightmost n characters of a string.

See also LEFT$ and MID$.

Syntax:

RIGHT$(x$, n)

x$ is an input string. n is the number of characters to read from

the right.

If n is greater than or equal to the length of x$ then the whole

string is returned.

Example:

10 PRINT RIGHT$("Hello world", 5)

Prints “world”.

RND
Returns a random number between 0 and 1.

Syntax:

RND[(n)]

If n is omitted, then the value returned will be the next random

number. If n is 0, then the last random number generated is

returned.

Seed the random number generation with RANDOMIZE.

Examples:

10 RANDOMIZE(123)

20 PRINT RND

30 PRINT RND(0)

Prints “0.339305” twice.

10 x = 100

20 PRINT INT(RND * (x + 1))

Prints a random integer between 0 and x (inclusive).

Mataki-Lite EMBASIC Reference 56

Version 2 Copyright © Debug Innovations Ltd 2018-2019

ROUND
Rounds the given numeric value to the nearest integer.

0.5 (exactly) rounds up to 1 and -0.5 rounds down to -1.

See also FIX and INT.

Example:

10 PRINT ROUND(4.5)

20 PRINT ROUND(12.246)

30 PRINT ROUND(-199.85)

Prints “5”, “12” and “-200”.

RUN
Starts execution of program from the first line. Also performs a
pre-run check to evaluate any problems before starting.

Not legal while running.

Example:

10 PRINT "Hello"

> RUN

Hello

Mataki-Lite EMBASIC Reference 57

Version 2 Copyright © Debug Innovations Ltd 2018-2019

SAVE
Saves the current program so it can be recalled later.

Not legal while running. See also LOAD.

Syntax:

SAVE "filename"

filename is the name the file should be given and, in the

emulation, can include a directory path. Do not include the
“.bas” extension.

On Mataki-Lite, this saves the current program over the one
stored in flash. The “uploaded” field on start up is set to “Local
SAVE”. Note that auto-run cannot be set when saving locally on
a device.

Example:

Imagine a Mataki-Lite with the current script name
old_script.bas:

10 PRINT "I am a script"

20 x = 10

Then the user makes edits to the script such that it looks
like so:

10 PRINT "I am an edited script"

20 x = 50

Then executes the following command on the command
line:

> SAVE "new_script"

Then on the next device boot, the device would show
“new_script.bas” as the current script in the start up

message and using LIST would show the new script:

> LIST

10 PRINT "I am an edited script"

20 x = 50

Mataki-Lite EMBASIC Reference 58

Version 2 Copyright © Debug Innovations Ltd 2018-2019

SGN
Returns the sign of a given numeric value.

SGN(x) for different values of x:

x > 0 Returns 1

x = 0 Returns 0

x < 0 Returns -1

Example:

10 PRINT SGN(5) ; ", " ;

20 PRINT SGN(0) ; ", " ;

30 PRINT SGN(-81.24)

Prints “1, 0, -1”

SIN
Returns the trigonometric sine of a numeric value in radians.

See also COS, TAN and ATN.

Syntax:

SIN(x)

x is a value in radians.

To convert the return value to degrees, multiply by _RADTODEG.

Example:

10 PRINT SIN(0)

20 PRINT SIN(_PI / 2)

30 PRINT SIN(_PI)

40 PRINT SIN(3 * _PI / 2)

Prints “0”, “1”, “0”, and “-1”.

Mataki-Lite EMBASIC Reference 59

Version 2 Copyright © Debug Innovations Ltd 2018-2019

SPC
Used to insert spaces when using a PRINT command.

If more spaces are inserted than the terminal has width to
display them, then they are continued on the next line.

See also TAB.

Example:

10 PRINT "A" ; SPC(10) ;

20 PRINT "B" ; SPC(10) ;

30 PRINT "C"

Prints “A B C”.

SQ
Returns the square of a numeric value.

See also SQR.

Example:

10 PRINT SQ(5)

20 PRINT SQ(-8.433)

30 PRINT SQ(SQR(2))

Prints “25”, “71.1155”, and “2”.

Mataki-Lite EMBASIC Reference 60

Version 2 Copyright © Debug Innovations Ltd 2018-2019

SQR
Returns the square root of a numeric value.

If the value given is less than 0, then the error “Square root of
negative number” is given.

See also SQ.

Example:

10 PRINT SQR(25)

20 PRINT SQR(2)

30 PRINT SQR(0)

Prints “5”, “1.41421”, and 0.

STOP
Stops program execution and returns to immediate mode, where

it can be continued with CONT.

Not legal in immediate mode. See also END.

Gives the message “STOP at line n” when encountered, where n

is the line where the STOP command was found. In contrast,

END simply stops silently.

Do not use this in any deployed script, as going back to
immediate mode would make the tag go indefinitely idle.

Example:

This program prints “Hello” then stops.

10 PRINT "Hello"

20 STOP

30 PRINT "Goodbye"

When run, it gives the following output...

> RUN

Hello

STOP at line 20

Mataki-Lite EMBASIC Reference 61

Version 2 Copyright © Debug Innovations Ltd 2018-2019

STR$
Returns a string representation of a given numeric value in
decimal.

See also HEX$.

Example:

10 x = 5

20 y = -12

30 z = 45.12

40 LEN(STR$(x)) ;

50 LEN(STR$(y)) ;

60 LEN(STR$(z))

Gives the number of characters in some different
numbers. Prints “1, 3, 5”.

SWAP
Swaps the values of two variables of the same type.

Syntax:

SWAP var1, var2

If the types of var1 and var2 are not the same then the error

“Type Mismatch” is given.

Example:

10 a$ = "Alice"

20 b$ = "Bob"

30 x = 28

40 y = 31

50 GOSUB 1000

60 SWAP x, y

70 GOSUB 1000

80 SWAP a$, b$

90 GOSUB 1000

100 END

1000 PRINT a$; " is " ; x ; " and " ;

1010 PRINT b$; " is " ; y

1020 RETURN

Prints “Alice is 28 and Bob is 31”, “Alice is 31 and Bob is
28”, and “Bob is 31 and Alice is 28”.

Mataki-Lite EMBASIC Reference 62

Version 2 Copyright © Debug Innovations Ltd 2018-2019

SYSTEM
Exits the EMBASIC interpreter on the emulator. Has no effect on
Mataki-Lite.

Not legal while running.

TAB
Used to move the text cursor to a specific position when using a

PRINT command.

See also SPC.

Syntax:

TAB(x)

If x is less than 1, then it is set to position 1. If x is greater than

80, then it is set to position 80. If x is further back than the

current text cursor position, then it remains where it currently is.

Examples:

10 PRINT "Hello" ; TAB(10) ;

20 "world" ; TAB(20) ; "!"

Prints “Hello world !” (characters starting at cursor
positions 0, 10, and 20).

10 PRINT "Hello" ; TAB(1) ; "world"

Prints “Helloworld”, because the TAB(1) tries to move

the cursor to a position it has already passed.

TAN
Returns the trigonometric tangent of a numeric value in radians.

See also ATN, SIN and COS.

Syntax:

TAN(x)

x is a value in radians.

To convert the return value to degrees, multiply by _RADTODEG.

Example:

10 PRINT TAN(0)

20 PRINT TAN(_PI / 4)

Prints “0” and “1”.

Mataki-Lite EMBASIC Reference 63

Version 2 Copyright © Debug Innovations Ltd 2018-2019

TIME$
Returns a string representation of the time in the format
“HH:MM:SS”. This is a read-only value.

All time/date values are in UTC because the time is obtained
from the GPS satellites.

See also DATE$.

Example:

10 PRINT TIME$

Prints the current time.

TIMER
An integer containing the number of seconds since midnight.
This is a read-only value.

All time/date values are in UTC because the time is obtained
from the GPS satellites.

TIMER is intended to be used in applications where the same

thing happens every day at a prescribed time e.g. only taking
GPS fixes at times when an animal is expected to be awake.

TIMER should not be used to measure the duration of events

e.g. for timeout purposes as the value resets to zero at midnight.

For this type of application, use CLOCK.

Note that, in common with all the other timer functions, if the
GPS time has not been obtained e.g. on first switch on, then the
time will be wrong and scripts should be written to expect this
and anticipate a sudden time jump when the time is obtained.

Example:

10 IF TIMER < 79200 PRINT "I want to go to

 sleep" : END

20 PRINT "I’m sleeping..."

If it’s before 10PM, print “I want to go to sleep”. If it’s
after 10PM print “I’m sleeping...”.

Mataki-Lite EMBASIC Reference 64

Version 2 Copyright © Debug Innovations Ltd 2018-2019

TRON
TROFF

Enables or disables tracing the line numbers of the commands
being executed.

This is a useful debugging tool to find out where the application
is going as it is running.

The use of TRON anywhere in a program will cause it to be

enabled for the runtime of the whole program.

TROFF disables line number tracing.

Example:

10 PRINT "The first print"

20 x = 1 + 1

30 PRINT "And the second"

40 FOR i = 1 TO x

50 y = 5

60 NEXT

> TRON

> RUN

[10]The first print

[20][30]And the second

[40][50][60][50][60]

UPPER$
Returns the given string with all lower-case characters converted
to upper-case.

See also LOWER$.

Example:

10 PRINT UPPER$("HeLlO wOrLd”)

Prints “HELLO WORLD”.

Mataki-Lite EMBASIC Reference 65

Version 2 Copyright © Debug Innovations Ltd 2018-2019

VAL
Returns the numerical value of a given string.

If the first non-whitespace character of the input string is not a
valid number (-, ., 0-9) then the return value will be undefined.

If any non-numeric characters are found after the start of the
string, then the value up to that point is returned.

Examples:

10 PRINT VAL("50")

20 PRINT VAL("10.02")

30 PRINT VAL(" -8.7")

40 PRINT VAL(".1")

50 PRINT VAL("123abc")

Prints “50”, “10.02”, “-8.7”, “0.1”, and “123”.

VER
Prints the platform version.

Example:

10 VER

Prints “V1.2.3”.

Mataki-Lite EMBASIC Reference 66

Version 2 Copyright © Debug Innovations Ltd 2018-2019

6.2. Operators

Numeric

+
Adds two numeric values.

-
Subtracts one numeric value from another.

*
Multiplies two numeric values.

/
Divides one numeric value by another.

^
Raise a numeric value to the power of another.

MOD
Performs modulo operation on two numeric values. They are
truncated to integers before the operation.

While negative values are allowed, unintended results may occur
if they are used.

()
Brackets may be used to change the order of evaluation

String

+
Concatenates two string values.

Mataki-Lite EMBASIC Reference 67

Version 2 Copyright © Debug Innovations Ltd 2018-2019

Relational

=
Compares two values for equality. Returns -1 (true) if the two
values are the same or 0 (false) if the two values are different.

<>
Compares two values for inequality. Returns -1 (true) if the two
values are different or 0 (false) if the two values are the same.

>
Compares two values in size. Returns -1 (true) if value 1 is
greater than value 2 or 0 (false) if value 1 is less than or equal to
value 2.

>=
Compares two values in size. Returns -1 (true) if value 1 is
greater than or equal to value 2 or 0 (false) if value 1 is less than
value 2.

<
Compares two values in size. Returns -1 (true) if value 1 is less
than value 2 or 0 (false) if value 1 is greater than or equal to
value 2.

<=
Compares two values in size. Returns -1 (true) if value 1 is less
than or equal to value 2 or 0 (false) if value 1 is greater than
value 2.

Relational operators can be used to compare numeric values or strings. When comparing

strings, the '<', '<=', '>' and '>=' operators reflect the alphabetical order in ASCII. Due to

issues with strings (see section 8) the string relational operators work in IF statements but

don't return true and false like they should, so combining numeric and string comparisons

with logical operators may not work as expected.

Relational operators return a value of 0 if the comparison is false and -1 if the comparison is

true e.g. (1 = 2) has a value of 0 (false, one is not equal to two), whereas (1 < 2) has a

value of -1 (true, one is less than two). In binary 0 is all bits '0' and -1 is all bits '1'.

Using the bitwise operators below on results of comparisons using relational operators

results in the logical operator behaviour, giving rise to naturally expected behaviour for

expressions such as...

IF (X < 10) AND (Y > 3) THEN...

If (X < 10) is true, it has a value of -1. If (Y > 3) is true, it also has a value of -1.

The bitwise AND of all binary '1's is all '1's i.e. -1. So the whole expression is true. If one of

the comparisons is false, the bitwise AND will result in zero (false).

So the logical operator behaviour is ensured by the true and false values returned by

relational operators. However, care must be taken not to apply bitwise operators to values

which are not true/false. For example NOT 1 has a value of -2, because 1 is neither true

nor false.

Mataki-Lite EMBASIC Reference 68

Version 2 Copyright © Debug Innovations Ltd 2018-2019

In the table below, the bitwise behaviour of each operator is described and the more natural

logical behaviour (as will result from comparisons using relational operators).

Bitwise / Logical

NOT
Bitwise: Unary operator returning the one’s complement of the
given value (every bit inverted).
Logical: A true value becomes false and a false value becomes
true.

AND
Bitwise: Combines the two values with a bitwise AND operation.
Logical: True if both values are true, otherwise false.

OR
Bitwise: Combines the two values with a bitwise OR operation.
Logical: True if either or both values are true, otherwise false.

XOR
Bitwise: Combines the two values with a bitwise XOR operation.
Logical: True if only one of the values is true (not both),
otherwise false. XOR can also be described as true if the values
are different, false if they are the same.

6.3. Operator Precedence
When evaluating expressions, EMBASIC applies the operators in the order shown

in the table below. This is in line with standard mathematical practice and is

common to most programming languages. The order can always be changed

using brackets. However, the reason for operator precedence is to allow the

programmer to write an expression in a natural way and have it operate how

most people would expect without needing brackets.

If EMBASIC evaluated expressions from left to right with no operator precedence,

the following expression...

IF X < 10 AND Y > 3 THEN...

would be interpreted as...

IF ((X < 10) AND Y) > 3 THEN...

but with operator precedence, because AND has a lower precedence than the >

operator, the expression is interpreted as...

IF ((X < 10) AND (Y > 3)) THEN...

...which is the naturally expected behaviour.

Mataki-Lite EMBASIC Reference 69

Version 2 Copyright © Debug Innovations Ltd 2018-2019

Experienced programmers use brackets when there is a chance another

programmer might misinterpret his/her intention, even though strictly speaking,

the operator precedence is known and can be looked up if required.

This example shows how the addition of brackets would make things clearer.

The statement prints 25, calculated as (3 * 7) + (2 squared)...

PRINT 3 * 7 + 2 ^ 2

Highest Precedence

()
Brackets (not strictly operators)

^
Raise to a power

* /
Multiply and divide

MOD
Modulo operation

+ -
Add and subtract

= <> > < >= <=
All the relational operators

NOT
NOT operator

AND
AND operator

OR
OR operator

XOR
XOR operator

Lowest Precedence

Mataki-Lite EMBASIC Reference 70

Version 2 Copyright © Debug Innovations Ltd 2018-2019

7. Not Supported
This is a list of features that are supported in some versions of BASIC, but aren’t

currently supported in EMBASIC:

 String arrays (take too much memory)

 Multi-dimensional arrays (can be emulated, generally take too much memory)

 Reading/writing files in a script (no file system on a tag)

 Integer variables (for simplicity, all variables are floating point)

o e.g. L%

 Nested conditional statements

o e.g. IF A>B THEN IF C>D THEN E=1 ELSE E=2 ELSE E=0

 TAB() and SPC() don't suppress carriage return as the specification requires

 User defined functions (DEF FN)

 WHILE and WEND

 PRINT USING

8. Known Issues
This is a list of known issues that are intended to be fixed:

 IF and UNTIL statements do not support mixed type expressions, e.g.

IF (A$ = "Y") AND (B < 3) THEN...

